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• Core Goal: Dataset distillation creates a small synthetic dataset that 
maintains the performance of models trained on the full large dataset, 
improving computational efficiency
• Current Limitations: 
   ◦ Bi-level optimization methods typically require expensive computation 
of second-order derivatives
   ◦ Distribution matching methods using MMD does not directly capture  

   geometric properties, leading to suboptimal performance

• Geometric Insight: Wasserstein distance measures minimal transport 
cost between distributions, which naturally captures distribution geometry
• Barycenter Property: Represents distribution centroid under certain 
constraints (e.g. sample size), preserving essential characteristics

• Representativeness: Our synthetic images capture essential class 
features aligned with human perception (shown in the upper row)
• Distribution Preservation: Better maintains intra-class variations from 
the training data distribution (shown in the lower row)

• Core idea:  First computes class-wise Wasserstein barycenter in the 
feature space; then learns synthetic images that match these points
• Efficient barycenter computation: Alternating optimization
   ◦ Weight optimization: Solve optimal transport with fixed positions
   ◦ Position optimization: Newton step updates using transport weights
• Leveraging deep model prior: 
   ◦ Use features from a pretrained classifier for high-dimensional image 
data
   ◦ Propose Per-Class BatchNorm (PCBN) regularization to match BN 
statistics in each class separately, modeling intra-class distribution

• Match the features of the synthetic images with the corresponding 
data points in the learned barycenter:

• State-of-the-Art: Consistent improvements across all datasets
◦ Large performance gains over prior art in >10 IPC settings
◦ 100 IPC results approaching full dataset performance with the same 
teacher model (ResNet 18)

• Ablation Studies: Combining Wasserstein metric with our PCBN 
regularization achieves best results across datasets; using Wasserstein 
metric alone leads to mixed results
• Wasserstein vs MMD: Significant performance advantage over MMD. 
This largely stems from the intractable trade-off between approximation 
errors and computational feasibility of the empirical MMD loss.
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• Match the BN statistics of the synthetic data feature map with the real 
data, with synthetic samples weighted by the learned barycenter weight:

• Combined loss:

Our loss function is designed as follows:

• Cross-architecture generalization
◦ Performance increasing with the 
model capacity in ResNet family
◦ Lower performance but still 
surpassing prior methods for ViTs Results with different evaluation models on 

ImageNet-1K in 50 IPC setting

Ablation results on loss function components 
in 10 IPC setting Metric comparison on Tiny-ImageNet


