Dataset Distillation via the Wasserstein Metric
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Dataset Distillation Challenge

(a) (b) KL divergence (c) MMD distance (d) Wasserstein distance

» Core Goal: Dataset distillation creates a small synthetic dataset that
maintains the performance of models trained on the full large dataset,
improving computational efficiency
» Current Limitations:

o Bi-level optimization methods typically require expensive computation
of second-order derivatives

o Distribution matching methods using MMD does not directly capture

geometric properties, leading to suboptimal performance

Advantage of Wasserstein metric

» Geometric Insight: Wasserstein distance measures minimal transport
cost between distributions, which naturally captures distribution geometry
* Barycenter Property: Represents distribution centroid under certain
constraints (e.g. sample size), preserving essential characteristics

Synthetic Data Quality
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Our synthetic images of the class Hay (classId: 958)

* Representativeness: Our synthetic images capture essential class
features aligned with human perception (shown in the upper row)

* Distribution Preservation: Better maintains intra-class variations from
the training data distribution (shown in the lower row)

WMDD Method
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* Core idea: First computes class-wise Wasserstein barycenter in the
feature space; then learns synthetic images that match these points
 Efficient barycenter computation: Alternating optimization

o Weight optimization: Solve optimal transport with fixed positions

o Position optimization: Newton step updates using transport weights
* Leveraging deep model prior:

o Use features from a pretrained classifier for high-dimensional image
data

o Propose Per-Class BatchNorm (PCBN) regularization to match BN
statistics in each class separately, modeling intra-class distribution

Implementation Details

Our loss function is designed as follows:

» Match the features of the synthetic images with the corresponding
data points in the learned barycenter:
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* Match the BN statistics of the synthetic data feature map with the real
data, with synthetic samples weighted by the learned barycenter weight:
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» Combined loss:
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Performance Results

Mailiods ImageNette Tiny ImageNet ImageNet-1K

1 10 50 100 1 10 50 100 1 10 50 100
Random [60] 235 +48 47.7 +24 1.5 +01 6.0x+08 168 +13 0.5+01 3.6+01 153 +23
DM [60] 32.8 +o0s5s 58.1 +o03 39 +o02 129 +o04 24.1 to3 1.5 +01
MTT [3] 47.7 +09 63.0 +13 88 +03 23.2 +02 28.0 +03 - - -
DataDAM [35] 34.7 +09 594 +04 . 83 +04 18.7 03 28.7 +03 - 20+01 63 +00 155 +o02 -
SRe2L [53] 20.6" 03 5427 +04 8047 +04 8597102 41.1 +04 49.7 +03 21.3 +06 46.8 02 52.8 +04
CDA* [52] 48.7 53,2 - 535 58.0
G-VBSM [36] - 47.6 +03 51.0 104 314 o5 51.8 +04 55.7 104
SCDD [63] - - - - 31.6 01 459 +o2 - - 32.1 02 53.1 £o1 57.9 +o0.
WMDD 40.2 +06 648 04 835 +o03 8701 +03 T7.6+02 41.8 +o01 594 +05 61.0 £o3 3.2+03 38.2 +o2 57.6 05 60.7 +o2

» State-of-the-Art: Consistent improvements across all datasets
o Large performance gains over prior art in >10 |[PC settings
> 100 IPC results approaching full dataset performance with the same
teacher model (ResNet 18)

e Cross-architecture generalization

_ _ _ Method Resl8 Res50 Resl01 WVIT-T VIT-S

° Performanc_e |pcrea3|ng W|th_the SRe’L 4802 5561 6086 1656 15.75
model capacity in ResNet family CDA 5443 6079 6174 3122 3297
: G-VBSM 5228 5908 5930 3030 30.83

Lower performance but still WMDD (Ours) 57.83 61.22  62.57 34.25 34.87

surpassing prior methods for ViTs

Results with different evaluation models on
ImageNet-1K 1n 50 IPC setting

Ablation Studies
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Ablation results on loss function components

in 10 IPC setting S

Metric comparison on Tiny-ImageNet

* Ablation Studies: Combining Wasserstein metric with our PCBN
regularization achieves best results across datasets; using Wasserstein
metric alone leads to mixed results

» Wasserstein vs MMD: Significant performance advantage over MMD.
This largely stems from the intractable trade-off between approximation
errors and computational feasibility of the empirical MMD loss.



